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Abstract. The Thorne-Roberts variable flavour number scheme (VFNS) for heavy quarks is presented
in detail for the specific case of charged current DIS. As in neutral current DIS this provides a smooth
extrapolation from the fixed flavour number scheme (FFNS) appropriate at low Q2 to the zero-mass variable
flavour number scheme (ZM-VFNS) appropriate as Q2 → ∞, and differs from alternative versions of a
VFNS by the definition of the coefficient functions at each order, and the strict ordering of the expansion
in αS . However, there are subtle differences from the neutral current case which are addressed here. We
discuss both the LO and NLO expressions, the latter unfortunately requiring some (minimal) modelling
due to the current lack of some necessary O(α2

S) FFNS coefficient functions.

1 Introduction

In the past few years direct measurements of charm pro-
duction at HERA [1,2], as well as the fact that the charm
structure function F c2 can be 20% or more of the total F2,
have made a consistent theoretical framework for heavy
flavour production in neutral current deep inelastic scat-
tering (DIS) essential. For Q2 <∼ m2

c , where mc is the
charm quark mass, the conventional description in terms
of order-by-order in αs coefficient functions for the pro-
duction of charm in the final state is perfectly satisfactory,
but for Q2 >> m2

c this description becomes potentially
unreliable due to the presence of logarithms in ln(Q2/m2

c)
at all orders in αs which ideally should be resummed. By
changing to the alternative description where the charm
quark is treated as a parton this resummation is auto-
matically performed and, at the same time, a complete
set of parton densities needed to calculate other processes
involving nucleons is obtained. It is relatively straightfor-
ward to do this by treating charm as a massless parton,
thus obtaining the correct high Q2 limit, but more chal-
lenging to obtain a treatment which successfully includes
the charm mass effects for Q2 not too far above m2

c .
This problem was first addressed in [3], and the term

variable flavour number scheme (VFNS) coined for a gen-
eral order-by-order prescription for the calculation of F c2
which extrapolates from Q2 ≤ m2

c , to the asymptotic limit
Q2/m2

c → ∞. However, while the prescription in [3] is
certainly formally correct (an all orders proof being pre-
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sented in [4])1 it is arguable that it is not the most efficient
and elegant definition of a VFNS. In particular, the cor-
rect threshold behaviour for charm pair production is not
precisely maintained order by order, leading to a lack of
smoothness when one begins charm parton evolution, par-
ticularly in F cL. In [6] we developed a VFNS which while
to all orders is identical to that in [3]2, differs at any fixed
order in perturbation theory, both due to the definition
of the coefficient functions and due to the way in which
we define what a given order actually means. Essentially,
we use the inherent freedom in the definition of the coeffi-
cient functions corresponding to charm partons to ensure
smoothness of the structure functions across the transi-
tion point where we switch from a three to a four flavour
scheme. This results in the “Thorne-Roberts” VFNS.

Recently it has become apparent that the treatment
of heavy flavours is also very important in the context
of charged current scattering. In particular, a consistent
method is needed in order to explain the data obtained
by CCFR [8], and resolves the long standing discrepancy
between this and the NMC muon data [9] for x ≤ 0.01
(see [10] for a presentation of the “Physics-Model Inde-
pendent” treatment of this data, and [11] for a discussion
of the theoretical issues involved). Although we outlined
the way in which one treats charged currents in the TR

1 Strictly speaking this scheme, as well as ours, applies to
the total structure function F2 - the explicit separation of a
charm component F c

2 becoming ambiguous beyond NLO, as
discussed in [5]

2 This is only exactly true if there is no intrinsic charm. If
there is intrinsic charm the schemes differ by O(Λ2

QCD/Q2) [7],
i.e. of the order of the error in perturbative QCD
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scheme in the latter of [6], and produced publicly available
code at the time, closer examination has revealed that the
issue is more subtle than we originally believed, and that
the original code contained some errors. Hence, in this pa-
per we will present the explicit form of the TR VFNS for
charged currents, and accompany the paper with a revised
code. The paper contains our results at leading order (LO)
and next-to-leading order (NLO). The former of these is
complete, while unfortunately the latter contains a certain
amount of modelling since the NLO fixed flavour number
scheme (FFNS) coefficient functions, which would be nec-
essary in the full prescription, have not yet been calcu-
lated. We find that a minimal degree of sophistication is
needed in the modelling however.

2 Definition of the VFNS at LO

The general formulation of the VFNS for charged current
interactions was presented in the appendix of the former
of [6]. Here we shall be more explicit, and work order by
order. We consider the process W+ → c, s̄ or W+ → c, d̄.
The whole of the variable flavour number scheme is based
on the idea that ignoring any intrinsic heavy flavour (as we
shall do in this paper) the partons in the 4-flavour scheme
are related to those in the 3-flavour scheme by

f4
b (z, µ

2,m2
c/µ

2) = Aba(µ2/m2
c) ⊗ f3

a (µ
2), (1)

where the Aba(µ2/m2
c) are perturbatively calculable ma-

trix elements which are known to O(α2
S) [12]. By using

the exact equivalence of the total structure function cal-
culated in either the FFNS or the VFNS, i.e.

Fi(x,Q2,m2
c) = CFFa ⊗ f3

a (µ
2)

≡ CV Fb ⊗ f4
b (z, µ

2,m2
c/µ

2), (2)

and using (1) one obtains the VFNS coefficient functions
in the implicit form

CV Fb (z,Q2/µ2,m2
c/µ

2)

= CFFa (Q2/µ2,m2
c/µ

2) ⊗
[
Aba(µ2/m2

c)
]−1

. (3)

Since the index b runs over one more value than index a the
above equation does not have unique solutions, and there
is an inherent freedom in the definition of the VFNS coeffi-
cient functions to which the parton distributions are com-
pletely insensitive. In [3] they were calculated explicitly
in MS scheme using charm quarks in the initial state, and
all collinear divergences systematically removed. The same
direct definition of coefficient functions is used in [5]. How-
ever, at fixed order this definition can lead to single charm
quark production below the real threshold for pair produc-
tion, as well as a lack of smoothness when switching from 3
to 4 flavours (depending on renormalization/factorization
scale), as clearly seen in Fig. 18 of [5]. Hence, we use an al-
ternative method to define the coefficient functions while
using the same parton distributions. We use the freedom

to redefine coefficient functions while still satisfying (3)
and solve (3) order by order, removing the freedom by im-
posing the continuity of dFi(x,Q2)/d lnQ2 (in the gluon
sector) across the transition point. This then guarantees
the correct threshold behaviour in each coefficient func-
tion, and smoothness when switching flavour number. The
difference between this scheme and [3] and [5] is effectively
a change of factorization scheme such that coefficient func-
tions differ by O(m2

c/Q
2), but where the parton distribu-

tions are identical in the two schemes. Hence, our VFNS
uses the standard 4-flavour MS partons.

The case of charged current scattering is made more
complicated than that for neutral currents by the fact that
the heavy quark is often produced along with, or from, a
light quark, rather than in a heavy quark-antiquark pair.
Hence, within the FFNS it is not the production of the
charm quark which vanishes at zeroth order in αS . In fact
at LO the charm quark structure function is given by

F c,LO2 (x) = 2 [ cos2 θc ξs(ξ) + sin2 θc ξd(ξ) ]

xF c,LO3 (x) = 2 [ cos2 θc xs(ξ) + sin2 θc xd(ξ) ] (4)

where ξ = x/x0, x0 = 1/(1 + ε) and ε = m2
c/Q

2. The
partons being functions of ξ rather than x due to the need
to put the charm quark on mass-shell. From now on we will
denote [ cos2 θc ξs+sin2 θc ξd ] by s̃. At zeroth order it is
the production of the weak eigenstate conjugate to c, i.e.
¯̃s, which has zero production cross-section in the FFNS.
In this scheme the LO contribution to ¯̃s production is (we
choose µ2 = Q2)

F
¯̃s
i (x) = 2

(αS
4π

)∫ x0
x

dz C
(1)FF
i,g (z, ε) g̃(x/z) (5)

where g̃(x) = xg(x), and in this paper we consider the
cases i = 2 and i = 3. The fixed flavour coefficient func-
tions on the rhs of (5) are related to the the W+g → cs̄
coefficients given by [13]

C
(1)FF
2,g (z, ε) =

2
x0

Hg2 (
z

x0
)

C
(1)FF
3,g (z, ε) = 2 Hg3 (

z

x0
), (6)

which are an update of those in [14] to account for the
correct counting of gluon helicity states in D = 4 + 2ε
dimensions. The factor of 2 is just our convention while
the factors of x0 come from a change of variables in the
integration defining the convolution compared to [13].

Above the transition point3, which as before we choose
for convenience to be Q2 = m2

c , one can produce ¯̃s quarks
directly from initial state charm quarks, i.e. at LO the
(Q2-dependent) LO expression is

F
¯̃s
i (x) =

∫ x0
x

dz C
(0)V F
i,¯̃sc (z, ε) c̃(x/z). (7)

3 Throughout we ignore reference to the number of flavours
concerning αS . However, αS(Q2) does change across the tran-
sition point as discussed for the neutral current case in [6]
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In principle we now impose the continuity of dF
¯̃s
i (x)

d lnQ2 at first
order in αS to obtain

dC
(1)FF
i,g (z, ε)
d lnQ2 = C

(0)V F
i,¯̃sc (ε) ⊗ P (0)

qg , (8)

where P (0)
qg (z) = 1/2(z2 + (1 − z)2), i.e. the LO quark-

gluon splitting function. As shown in [6] one may invert
(8), more easily by considering the ultimate convolution
with the charm density, obtaining

C
(0) V F
i,¯̃sc (ε) ⊗ c(Q2)

= −
∫ x0
x

dz
dC

(1)FF
i,g (z, ε)
d lnQ2

(
x

z

)2
dc(x/z,Q2)
d(x/z)

+2
∫ x0
x

dz
dC

(1)FF
i,g (z, ε)
d lnQ2

x

z
c(x/z,Q2)

−2
∫ x0
x

dz
dC

(1)FF
i,g (z, ε)
d lnQ2

×
∫ 1

x/z

dz′ r(z′)
x

zz′ c(x/zz
′, Q2), (9)

where r(z) is given by

r(z) = z
1
2

[
cos
(√

7
2

ln
1
z

)
+

3√
7
sin
(√

7
2

ln
1
z

)]
. (10)

However, the fact that in the charged current case
the boson-gluon fusion process leads to a charm quark
plus a light quark, rather than the charm quark-antiquark
pair of the neutral current, leads to a technical complica-
tion. For the neutral current the LO boson-gluon fusion
coefficient function is infrared finite, and since it corre-
sponds to the production of two massive quarks, vanishes
smoothly at the kinematic threshold of Ŵ 2 = 4m2

c , where
Ŵ 2 = Q2(1/z−1). In contrast the charged-current boson-
gluon fusion has a collinear divergence due to the final
state light quark which must be regularized using dimen-
sional regularization, and a subtraction made according
to the rules of collinear factorization. The remaining fi-
nite coefficient function is no longer a real cross-section,
and although it vanishes for Ŵ 2 below the threshold of
Ŵ 2 = m2

c , it does not tend to zero at the threshold, and
in fact is logarithmically divergent as Ŵ 2 → m2

c . The
non-vanishing means that when taking the derivative of
the right-hand side of (5) with respect to lnQ2 one must
also take account of the end-point of the derivative, i.e.
we actually replace (8) by

d

d lnQ2 (C
(1)FF
i,g (ε) ⊗ g̃(Q2))

= C
(0)V F
i,¯̃sc (ε) ⊗ P (0)

qg ⊗ g̃(Q2), (11)

The fact that the coefficient function is divergent at this
point means the end-point contribution must be treated
with particular care.

Thus, in order to define C(0)V F
i,¯̃sc (z, ε) we separate out

the part of the gluon coefficient function which diverges
as z → x0 by writing

C
(1)FF
i,g (z, ε) = C

(1)FF
i,g,reg.(z, ε) + C

(1)FF.
i,g,dvgt.(z, ε).

This results in

C
(1)FF
2,g,reg.(z, ε)

=
1
x0

{
2P (0)
qg

(
z

x0

)
[Lλ

(
z

x0

)
− lnx0]

}

+2[8 − 18 (1 − x0) + 12 (1 − x0)
2]
z

x0

(
1 − z

x0

)

+2
[
1 − x0

1 − z
− 1
]
+ 2P (0)

qg

(
z

x0

)
ln
[

x0

(1 − z)z

]

×
{
+12(1 − x0)z(1 − 2z)Lλ

(
z

x0

)}
, (12)

where Lλ(z) = ln
[
x0(1−z)
(1−x0)z

]
, and

C
(1)FF
2,g,dvgt.(z, ε) =

4
x0
P (0)
qg

(
z

x0

)
ln
(
1 − z

x0

)
. (13)

Also

C
(1)FF
3,g,reg.(z, ε)

= 2P (0)
qg

(
z

x0

)
[−Lλ

(
z

x0

)
− lnx0] + 4(1 − x0)

z

x0

×
(
1 − z

x0

)
+ 2(1 − x0)

z

x0
Lλ

(
z

x0

)

×
[
−2
(
1 − z

x0

)
+ 2z

]
+ 2P (0)

qg

(
z

x0

)

× ln
[

x0

(1 − z)z

]
(14)

and
C

(1)FF
3,g,dvgt.(z, ε) = x0C

(1)FF
2,g,dvgt.(z, ε) (15)

It is easy to check that these coefficient functions ap-
proach the appropriate limits as Q2/m2

c → ∞. In this
limit ε → 0, x0 → 1 and

C
(1)FF
2,g (z, ε) → 2

{
8z(1 − z) − 1 + 2P (0)

qg (z) ln
[(

1 − z

z

)]

+P (0)
qg (z) ln(1/ε)

}
(16)

and
C

(1)FF
3,g (z, ε) → −P (0)

qg (z) ln(1/ε). (17)

Therefore both coefficient functions approach the mass-
less form plus the appropriate collinear logarithms for the
absorption into charm evolution.
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In the VFNS, Q > m2
c , we need

C
(0)V F
i,¯̃sc (ε) ⊗ P (0)

qg ⊗ g̃(Q2)

=
d

d lnQ2

[
C

(1)FF
i,g (ε) ⊗ g̃(Q2)

]
(18)

=
d

d lnQ2

([
C

(1)FF
i,g,reg.(ε) + C

(1)FF
i,g,dvgt.(ε) ⊗ g̃(Q2)

])
.

Let us consider each of these derivatives in turn. Strictly
the derivative is of the convolution so the terms generated
by differentiating the end point of the integration must be
included. We first consider the regular piece.

(a)
d

d lnQ2

[
C

(1)FF
2,g,reg.(ε) ⊗ g̃(Q2)

]
.

This results in

d

d lnQ2

[∫ x0
x

dz C
(1)FF
2,g,reg.(z, ε) g̃(x/z)

]

= εx2
0C

(1)FF
2,g,reg.(x0, ε)g̃(x/x0)

+εx2
0

∫ x0
x

dz
d

dx0
[C(1)FF

2,g,reg.(z, ε)] g̃(x/z)

= −εx0 ln[x0(1 − x0)]g̃(x/x0)

+εx2
0

∫ x0
x

dz
d

dx0
[C(1)FF

2,g,reg.(z, ε)] g̃(x/z) (19)

and using (12) we get

d

dx0
[C(1)FF

2,g,reg.(z, ε)]

=
[

2
x2

0(1 − x0)

]
P (0)
qg

(
z

x0

)
− 2
x2

0(1 − z)
+

12z(1 − 2z)
x2

0

×
[
1 − Lλ

(
z

x0

)]
+

(4zx0 − 6z2 − x2
0)

x4
0

ln
[

x0

(1 − z)z2

]

+
4z
x2

0

[
3z − 2(1 + 3z)x0 + 3(1 + 2z)x2

0
]

(20)

Now we also consider the divergent piece.

(b)
d

d lnQ2

[
C

(1)FF
2,g,dvgt.(ε) ⊗ g̃(Q2)

]
.

Differentiating this we obtain

d

d lnQ2

[∫ x0−δ

x

dz C
(1)FF
2,g,dvgt.(z, ε) g̃(x/z)

]

= εx2
0C

(1)FF
2,g,dvgt.(x0 − δ, ε)g̃(x/(x0 − δ))

+εx2
0

∫ x0−δ

x

dz
d

dx0

[
C

(1)FF
2,g,dvgt.(z, ε)

]
g̃(x/z), (21)

where for the moment we have moved the upper limit of
integration an infinitesimal amount δ below x0. Writing

C
(1)FF
2,g,dvgt.(z, ε) = φ(z, ε) ln

(
1 − z

x0

)
,

we get

d

d lnQ2

[∫ x0−δ

x

dzC
(1)FF
2,g,dvgt.(z, ε)g̃(x/z)

]

= εx2
0φ(x0, ε)g̃(x/(x0 − δ)) ln

(
1 − x0 − δ

x0

)

+εx2
0

∫ x0−δ

z

dz
d

dx0

[
φ(z, ε) ln

(
1 − z

x0

)]
×g̃(x/z). (22)

Now

d

dx0

[
φ(z, ε) ln

(
1 − z

x0

)]

=
z

x2
0(1 − z

x0
)
φ(z, ε) +

dφ(z, ε)
dx0

ln
(
1 − z

x0

)
(23)

and since, in this case, φ(z, ε) = 4
x0
P

(0)
qg ( zx0 ) then

dφ(z, ε)
dx0

ln
(
1 − z

x0

)

=
2
x4

0

(
4zx0 − 6z2 − x2

0
)
ln
(
1 − z

x0

)

and this contribution to the convolution can be added to
the regular contribution given by (20). Now the first term
on the rhs of (23) inserted into (22) gives

ε

∫ x0−δ

x

dz

1 − z
x0

zφ(z, ε)g̃(x/z)

= εx0φ(x0, ε)g̃(x/x0)
∫ x0−δ

x

dz

1 − z
x0

+ ε

∫ x0−δ

x

dz

1 − z
x0

× [zφ(z, ε)g̃(x/z) − x0φ(x0, ε)g̃(x/x0)]

= −εx2
0φ(x0, ε)g̃(x/x0) ln

(
1 − x0 − δ

x0

)

+εx2
0φ(x0, ε)g̃

(
x

x0

)
ln
(
1 − x

x0

)
+ ε

∫ x0−δ

x

× dz

1 − z
x0

[zφ(z, ε)g̃(x/z) − x0φ(x0, ε)g̃(x/x0)]. (24)

The first term in (24) cancels the first term in (22) (up
to O(δ)), and hence all divergences cancel as δ → 0. Re-
moving these two terms and now safely setting δ = 0 the
second term can be added to the first term of (19) as the
net ‘local’ contribution to the convolution.

So (a) and (b) together give the following contribu-
tions:

‘local′term : εx0

[
2 ln

(
1 − x

x0

)
− ln (x0(1 − x0))

]

g̃(
x

x0
), (25)

‘ +′ term :
2ε
x0

∫ x0
x

dz

1 − z
x0
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[
2zP (0)

qg (
z

x0
)g̃(x/z) − x0g̃

(
z

x0

)]
, (26)

‘regular′term : εx2
0

∫ x0
x

dz

{
d

dx0
C

(1)
2,g,reg.

(z, ε)

∣∣∣∣∣
(as given in (20))

+
2
x4

0
(4zx0 − 6z2 − x2

0) ln
(
1 − z

x0

)}
g̃(x/z)

≡
∫ x0
x

dz

(
dC

(1)
2,g (z, ε)
d lnQ2

)
reg

g̃(x/z). (27)

As Q2/m2
c → ∞, the only surviving term comes from the

regular piece which → 2P (0)
qg (z), and hence clearly using

(8), C(0)V F
2,¯̃sc (z, ε) → 2zδ(1 − z) in this limit.

In general we can use the three contributions to d
d lnQ2

C
(1)FF
2,g (ε) ⊗ g̃(Q2) to derive three contributions to the

charm quark coefficient function C(0)V F
¯̃sc (z, ε), convoluted

with the charm density. The part coming from the ‘reg-
ular’ term (27) contributes in the normal manner as in
(9). The part coming from the local term is even simpler,
becoming

C
(0) V F loc
i,¯̃sc (ε) ⊗ c(Q2)

= −floc(x, x0)
(
x

x0

)2
dc(x/x0, Q

2)
d(x/x0)

+2floc(x, x0)
x

x0
c(x/x0, Q

2)

− 2
x0

∫ x0
x

dzfloc(x, x0)r
(
z

x0

)
x

z
c(x/z,Q2), (28)

where

floc(x, x0) = εx0

[
2 ln

(
1 − x

x0

)
− ln (x0(1 − x0))

]
. (29)

The part coming from the ‘+’ term is the most compli-
cated. For the first two terms in the expression of the form
(9) it is relatively straightforward, i.e. we obtain

− 2ε
x0

∫ x0
x

dz

1 − z
x0

[
2zP (0)

qg

(
z

x0

)(
x

z

)2
dc(x/z)
d(x/z)

− x0

(
x

x0

)2
dc(x/x0)
d(x/x0)

]
+ 2

2ε
x0

∫ x0
x

dz

1 − z
x0

×
[
2zP (0)

qg

(
z

x0

)
c̃(x/z) − x0c̃(x/x0)

]
. (30)

In the final term we obtain a double convolution of the
form

2ε
x0

∫ x0
x

dz

1 − z
x0

[
2zP (0)

qg

(
z

x0

)∫ 1

x/z

dz′r(z′)c̃(x/zz′)

−x0

∫ 1

x/x0

dz′r(z′)c̃(x/x0z
′)
]
. (31)

In principle this can be calculated, but it is convenient to
make a change of variables and use y, z rather than z, z′,
where y = zz′. Doing this the first term in (31) becomes

2ε
x0

∫ x0
x

c̃(x/y)
∫ x0
y

dz

z
(
1 − z

x0

) 2zP (0)
qg

(
z

x0

)
r
(y
z

)
.

(32)
Changing variable in the second term gives

− 2ε
x0

∫ x0
x

c̃(x/y)
∫ x0
x

dz

x0

(
1 − z

x0

) x0r

(
y

x0

)
. (33)

The second integral is conveniently cut into two at z = y,
producing

− 2ε
x0

∫ x0
x

c̃(x/y)
(∫ x0
y

dz

x0

(
1 − z

x0

) x0r

(
y

x0

)

+
∫ y
x

dz

x0

(
1 − z

x0

) x0r

(
y

x0

))
. (34)

Altogether (32) and first part of (34) gives a contribution
of the form

2ε
x0

∫ x0
x

c̃(x/y)
∫ x0
y

dz(
1 − z

x0

)
×
[
2P (0)
qg

(
z

x0

)
r
(y
z

)
− r

(
y

x0

)]
, (35)

while the second part of (34) gives a contribution of the
form

2ε
x0

∫ x0
x

dy c̃(x/y)r
(
y

x0

)
ln
(
1 − y/x0

1 − x/x0

)
, (36)

where the second integral over z has been performed ex-
plicitly. Equation (35) defines the ‘+’ part while (36) ef-
fectively joins the local part (28).

Thus, we have all the ingredients to define C(0)V F
¯̃sc (ε)⊗

c̃(Q2). In order to obtain the complete LO expression for
the generation of ¯̃s quarks in the VFNS we then have to
add all these above ingredients to the LO FFNS expression
frozen at Q2 = m2

c as explained in [6]. Therefore

FLO,
¯̃s

2 (x,Q2) =
(
αS(m2

c)
2π

)
C

(1)FF
i,g (1)

⊗ g̃(m2
c) + C

(0)V F
¯̃sc (ε) ⊗ c̃(Q2), (37)

for Q2 > m2
c , where

C
(0)V F
¯̃sc (ε) ⊗ c̃

(
Q2)

= −
∫ x0
x

dz

(
dC

(1)FF
i,g (z, ε)
d lnQ2

)
reg

(x
z

)2 dc
(
x/z,Q2

)
d (x/z)

+2
∫ x0
x

dx

(
dC

(1)FF
i,g (z, ε)
d lnQ2

)
reg

x

z
c
(
x/z,Q2)
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−2
∫ x0
x

dz

(
dC

(1)FF
i,g (z, ε)
d lnQ2

)
reg

∫ 1

x/z

dz′ r (z′)
x

zz′

×c (x/zz′, Q2)− floc (x, x0)
(
x

x0

)2 dc
(
x/x0, Q

2
)

d (x/x0)

+2floc (x, x0)
x

x0
c
(
x/x0, Q

2)− 2
x0

∫ x0
x

dzfloc (x, x0)

×r
(
z

x0

)
x

z
c
(
x/z,Q2)− 2

2ε
x0

∫ x0
x

dy c̃ (x/y)

×r
(
y

x0

)
ln
(
1 − y/x0

1 − x/x0

)
− 2ε
x0

∫ x0
x

dz

1 − z
x0

×
[
2zP (0)

qg

(
z

x0

)(x
z

)2 dc (x/z)
d (x/z)

−x0

(
x

x0

)2
dc (x/x0)
d (x/x0)

]

+2
2ε
x0

∫ x0
x

dz

1 − z
x0

[
2zP (0)

qg

(
z

x0

)
c̃ (x/z) − x0c̃ (x/x0)

]

−2
2ε
x0

∫ x0
x

c̃ (x/y)
∫ x0
y

dz(
1 − z

x0

)
×
[
2P (0)
qg

(
z

x0

)
r
(y
z

)
− r

(
y

x0

)]
. (38)

This expression then guarantees continuity of both the
structure function and its derivative in lnQ2 as we switch
from 3 to 4 flavours at Q2 = m2

c .
Having completed the exercise for F2 we can now do

exactly the same thing for the phenomenologically inter-
esting case of F3. Once again we can first consider the
contribution coming from the regular part of the FFNS
coefficient function

(c)
d

d lnQ2

[
C

(1)FF
3,g,reg.(ε) ⊗ g̃(Q2)

]
.

Differentiating the contribution to the structure function
due to this we obtain

d

d lnQ2

[∫ x0
x

dz C
(1)FF
3,g,reg. (z, ε) g̃ (x/z)

]

= εx2
0C

(1)FF
3,g,reg. (x0, ε) g̃ (x/x0)

+εx2
0

∫ x0
x

dz
d

dx0

[
C

(1)FF
3,g,reg. (z, ε)

]
g̃ (x/z)

= −εx2
0 ln [x0 (1 − x0)] g̃ (x/x0)

+εx2
0

∫ x0
x

dz
d

dx0

[
C

(1)FF
3,g,reg. (z, ε)

]
g̃ (x/z) , (39)

and using (14) we get

d

dx0

[
C

(1)FF
3,g,reg. (z, ε)

]

=
[ −2
x0 (1 − x0)

]
P (0)
qg

(
z

x0

)
+

2z
x3

0
(x0 − 2z)

× ln
[

x0

(1 − x0) z2

]
+

4z
x3

0
(3z − 2x0) . (40)

We can then also consider the divergent part of the struc-
ture function

(d)
d

d lnQ2

[
C

(1)FF
3,g,dvgt.(ε) ⊗ g̃(Q2)

]
.

The only difference compared to (b) above is an extra
factor of x0 so that

dφ(z, ε)
d lnQ2 =

4z
x3

0
(x0 − 2z)

So (c) and (d) together give the following contributions:

‘local′term : εx2
0

[
2 ln

(
1 − x

x0

)
− ln (x0 (1 − x0))

]

g̃

(
x

x0

)
(41)

‘ +′ term : 2ε
∫ x0
x

dz

1 − z
x0

[
2zP (0)

qg

(
z

x0

)
g̃ (x/z)

−x0g̃

(
z

x0

)]
(42)

‘regular′term : εx2
0

∫ x0
x

{ d

dx0
C

(1)
3,g,reg. (z, ε) |(as given in (40))

+
4z
x3

0
(x0 − 2z) ln

(
1 − z

x0

)
}g̃ (x/z)

≡
∫ x0
x

dz

(
dC

(1)
3,g (z, ε)
d lnQ2

)
reg

g̃ (x/z) . (43)

As Q2/m2
c → ∞, the only surviving term comes from the

regular piece which → −2P (0)
qg (z), and hence clearly using

(8), C(0)V F
3,¯̃sc (ε) → −2zδ(1 − z) in this limit. As for F2

we can use the above three contributions to construct the
necessary C(0)V F

3,¯̃sc (ε)⊗ c̃(Q2) for the LO VFNS expression,
i.e. we obtain the equivalent of (38) with the ‘regular’ part
(27) replaced by (43), and the ‘local’ and ‘+’ contributions
being identical to those for F2 up to a factor of x0.

In practice, although it is convenient to talk about the
production of c quarks and or ¯̃s quarks they are often
produced together, and in order to define a physically rel-
evant inclusive quantity we have to add the contributions
we have considered for producing ¯̃s quarks, i.e. (5) in the
FFNS and (37) in the VFNS and their analogues for F3, to
the expressions for charm production (4). Using these we
have the contributions to the structure functions due to
the production and/or conversion of heavy flavours. The
relevant curves are shown in Figs. 1 and 2 for F2(x,Q2)
and F3(x,Q2) respectively, where one can indeed see the
continuity of both the structure functions and their deriva-
tives, and the fact that they reduce to the correct limits at
high and low Q24. (The small constant difference between
the ZM-VFNS and the VFNS results at high Q2 is due to
the m2

c-dependent first term on the rhs of (37), which as
we argued in [6] it is correct to include.) Note that at LO
we have to use parton densities evolved according to only
the LO splitting functions.

4 We use the preliminary set of partons described in [16]
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Fig. 1. Charm quark contribution to the structure functions,
F2(x, Q2) for x = 0.1, x = 0.01 and x = 0.001 calculated using
our LO prescription, our input parton distributions evolved at
LO and renormalization scale µ2 = Q2. Also shown are the
continuation of the LO FFNS expression and the ZM–VFNS
expression both calculated using the same parton distributions
and same choice of scale

3 The VFNS at NLO

We now consider the full range of NLO corrections to the
charged-current structure functions. There is in principle
a next-to-leading order correction to the production of
charm quarks from s̃ quarks, i.e.

(αS
4π

)∫ x0
x

dz C
(1)
i,cs̃(z, ε) ¯̃s(x/z) (44)

where the C(1)
i,cs̃(z) are presented in [13]. These coefficient

functions have no large logs in Q2/m2
c and simply reduce

to the correct massless expressions as ε → 0, and are the
same in VFNS as in FFNS. However, the contribution
from (44) is essentially negligible at all Q2 and x. Hence,
we use massless coefficient function for this process for
simplicity.

There are then also other contributions at NLO. These
are due to the coefficient functions C(2)FF

i,g (z, ε), C(2)FF,PS
i,¯̃sq

(z, ε) (where PS stands for pure singlet), C(1)V F
i,¯̃sc (z, ε) and
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Fig. 2. Same as Fig. 1, but for F3(x, Q2)

C
(1)V F
i,g (z, ε). We will first consider the last of these, since

this is the easiest to deal with.
The explicit form of (1) for µ2 = Q2 at O(αs) is

c(z,Q2) =
αs
2π

ln
(
Q2

m2
c

)
P 0
qg ⊗ gnf =3

gnf =4(z,Q2) = gnf =3(z,Q2) − αs
6π

ln
(
Q2

m2
c

)
gnf =3. (45)

Inserting the expressions for the matrix elementAcg(z, µ2/
m2
c) into (3) gives the simple relation

C
(1) FF
i,g (z, ε) = C

(1) V F
i,g (z, ε) + C

(0) V F
i,¯̃sc (ε) ⊗ P 0

qg ln
(
1
ε

)
(46)

connecting the O(αS) gluonic CF’s in the FFNS and
VFNS. Futhermore (11) allows the gluonic CF in the
VFNS to be written as

C
(1) V F
i,g (ε) ⊗ g̃(Q2)

= C
(1) FF
i,g (ε) ⊗ g̃(Q2)

− d

d lnQ2 (C
(1) FF
i,g (ε) ⊗ g̃(Q2)) ln

(
1
ε

)
. (47)

Hence, it is a straightforward procedure to take the re-
sults of the previous section regarding the correct treat-
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ment of d
d lnQ2 (C

(1) FF
i,g (ε)⊗g̃(Q2)), including the contribu-

tions from the endpoint of the integral in the convolution,
to completely define C(1) V F

i,g (z, ε). As with C
(0) V F
i,¯̃sc (z, ε)

there is a ‘regular’, ‘local’ and ‘+’ contribution. Using the
asymptotic limits for the FFNS coefficient functions in
(16) and (17), along with the limits on their lnQ2 deriva-
tives, presented in the previous section, we see that as
Q2/m2

c → ∞, C(1) V F
i,g (z, ε) do indeed tend to the correct

asymptotic MS limit.
In principle C

(2)FF
i,g (z, ε) and C

(2)FF,PS
i,¯̃sq (z, ε) con-

tribute at NLO. This is both in the FFNS expressions
for Q2 < m2

c , and in the VFNS where the values frozen
at Q2 = m2

c are used to ensure continuity of the struc-
ture function. Unfortunately, unlike the neutral current
case [15], neither of the contributions has been calculated
yet, and as such we have no option but to leave them out
completely. However, C(2)FF

i,g (z, ε) also has a role to play
in the definition of the NLO VFNS coefficient function
C

(1)V F
i,¯̃sc (z, ε), and it is not possible to simply claim igno-

rance and set this to zero since this would destroy the
continuity of dFi(x,Q2)

d lnQ2 at NLO.
To see this we must consider the equation defining

C
(1)V F
i,¯̃sc (z, ε). This is analogous to the case for the neu-

tral coupling discussed in Sect. 4 of the former of [6], and
we have the definition

dC
(2)FF
i,g (z, ε)
d lnQ2 = C

(1)V F
i,¯̃sc (ε) ⊗ dA

(1)
cg (ε)

d lnQ2 + C
(0)V F
i,¯̃sc (ε)

⊗ dA
(2)
cg (ε)

d lnQ2 +
1
3π

ln(1/ε)C(0)V F
i,¯̃sc (ε)

⊗ P (0)
qg , (48)

where the last term comes about from the difference in the
definition of the three and four flavour couplings. This
expression would guarantee both the continuity of the
lnQ2-derivative of the structure function at NLO (in the
gluon sector), and the correct asymptotic expression for
C

(1)V F
i,¯̃sc (z, ε) - all terms containing a power of ln(1/ε) be-

ing guaranteed to cancel. However, since we do not know
the NLO FFNS coefficient function, we cannot therefore
fully use the above equation. Nevertheless, simply putting
C

(1)V F
i,¯̃sc (z, ε) equal to its asymptotic value, which for the

moment we consider to be in practice zero, is not consis-
tent since this leads to the right-hand side of (48) being
equal to

C
(0)V F
i,¯̃sc (1) ⊗ P (1)

qg (49)

atQ2 = m2
c , where we have used the expression for dA

(2)
cg (ε)
d lnQ2

in (4.15) of the former of [6], whereas the left-hand side is
zero. Thus, there is a mismatch between the lack of evo-
lution at NLO for Q2 < m2

c , and from the NLO contribu-
tion to the evolution from the NLO quark-gluon splitting
function for Q2 > m2

c convoluted with the zeroth order
coefficient function. This mismatch may be large, partic-
ularly at small x. In order to avoid this we have to invoke

some ansatz for C(1)V F
i,¯̃sc (ε) so that the above contribution

is cancelled. Using the fact that dA
(1)
cg (z,ε)
d lnQ2 = P

(0)
qg (z), this

results in the requirement

C
(1)V F
i,¯̃sc (1) ⊗ P (0)

qg + C
(0)V F
i,¯̃sc (1) ⊗ P (1)

qg = 0. (50)

The minimal way in which to satisfy this, and to ensure
that C(1)V F

i,¯̃sc (ε) → 0 as ε → 0, is to demand that

C
(1)V F
i,¯̃sc (ε) ⊗ P (0)

qg = −ε C(0)V F
i,¯̃sc (ε) ⊗ P (1)

qg . (51)

In principle this is the definition we use for C(1)V F
i,¯̃s

(z, ε), but this would be extremely complicated to imple-
ment in practice. Since the coefficient function is always
convoluted with a parton distribution, and is based on the
known C(0)V F

i,¯̃sc (z, ε) we find an appropriate modification of

C
(0)V F
i,¯̃s (z, ε) necessary to account for the effect of the NLO

coefficient function. We find that assuming that the par-
ton distribution takes roughly the form (1−x)8x−0.3 then
we can model the action of this NLO coefficient function
by replacing all terms of the form

dC
(1)FF
i,g (z, ε)
d lnQ2 ⊗ f̃(x/z,Q2) (52)

occurring in (38) by

dC
(1)FF
i,g (z, ε)
d lnQ2 ⊗

(
1 − ε

38αS(Q2)
4π

(ln(4 + (x/z)−0.25)

− ln(4) − 2(x/z)
)
f̃(x/z,Q2), (53)

with analogous modifications for the ‘local’ and ‘+’ contri-
butions. It can be checked explicitly that this does indeed
represent the exact expression (51) very accurately. The
main effect is an opposite sign correction to the LO result
which increases in magnitude as one goes to smaller x. Ex-
amining (51) one sees that C(1)V F

i,¯̃sc depends on P (1)
qg /P

(0)
qg

(where the division is really only illustrative since con-
volutions are involved), and since P (1)

qg grows much more
quickly at small x than P (0)

qg this effect is fully expected.
Finally, we also add a contribution of (1−ε)C(1)ZM−V F

i,¯̃sc in
order to obtain the correct asymptotic limit, though the
contribution due to this is tiny at small Q2.

This completes our definition of the VFNS for charged
current scattering at NLO. Unfortunately a complete def-
inition will have to await the calculation of the unknown
NLO FFNS coefficient functions, but we are confident
that this will lead to only small corrections, mainly for
Q2 <∼ m2

c . In Figs. 3 and 4 we plot the contributions to
F2(x,Q2) and F3(x,Q2) respectively due to the produc-
tion and/or conversion of charm quarks at NLO5. Once

5 Again using partons from [16]
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Fig. 3. Charm quark contribution to the structure functions,
F2(x, Q2) for x = 0.1, x = 0.01 and x = 0.001 calculated using
our NLO prescription, our input parton distributions evolved
at NLO and renormalization scale µ2 = Q2. Also shown are
the continuation of the FFNS expression with LO coefficient
functions (those at NLO being unavailable) and the NLO ZM–
VFNS expression both calculated using the same parton dis-
tributions and same choice of scale. Also shown for comparison
is the VFNS result when C

(1)V F

2,¯̃s is set equal to zero

again one can see the continuity of the structure func-
tions and their derivatives, and the correct asymptotic be-
haviour6 (we plot the FFNS result obtained from the LO
coefficient functions since those at NLO are not known).
This time we use partons evolved at NLO. For compari-
son we also plot the NLO structure functions with C(1)V F

i,¯̃sc
set equal to zero. One can see that at small x this does
indeed lead to a clear discontinuity in the derivative in
the structure function at the transition point Q2 = m2

c ,
particularly as one goes to smaller x. This is, however, far
more clear for F3(x,Q2) where we are calculating roughly
the difference between the strange and charm quark dis-
tributions and the discrepancy in the evolution affecting
one shows up much more obviously than for F2(x,Q2),
which is roughly the sum of the two quark distributions.

6 This time the high Q2 limits of the VFNS and the ZM-
VFNS are identical since the constant difference would depend
on the unknown NLO FFNS coefficient functions
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Fig. 4. Same as Fig. 3, but for F3(x, Q2)

One can extend the treatment to higher orders in prin-
ciple following the general outline provided in the former
of [6]. As mentioned in the introduction, at NNLO and
beyond there is a complication in so much that particu-
lar flavours may be generated in the final state due to the
cutting of quark loops produced away from the interaction
vertex with the external gauge boson. This highlights the
experimental ambiguity in defining heavy flavour struc-
ture functions and in principle one needs define some kine-
matic cut on such quarks to decide whether they are in-
cluded or not. This issue is treated in [5] for the neutral
current case, though in practice the effect is extremely
small. Since for charged currents we do not even have a
complete definition of the VFNS or FFNS at NLO this
issue is not particularly pressing at the moment.

4 ∆xF3(x, Q2)

As we can see from Figs. 1–4 our VFNS works well, ensur-
ing smoothness and the correct limits. We can repeat ex-
actly the same procedure for the process W− → c̄, s̃, and
this then allows the calculation of combined neutrino and
antineutrino cross-sections, as measured by CCFR, and
also the currently interesting quantity ∆xF3 = xF νN3 −
xF ν̄N3 [10] where N represents an isoscalar target. We
present our results for ∆xF3 in Fig. 5, for the range of x
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Fig. 5. The NLO prediction for ∆xF3(x, Q2) using our VFNS
prescription, along with the data measured by CCFR [10]. The
prediction has been corrected for heavy target effects using [20]

relevant for the CCFR experiment (x > 0.01). The curves
are extremely similar to those for xF3(x,Q2) (with a fac-
tor of two), and would show the same type of kink at low
x if C(1)V F

3,¯̃sc,(c̄s̃)(z, ε) were set equal to its asymptotic value
or to zero. We also present the data on ∆xF3 measured by
CCFR [10], and note that our predictions lie considerably
beneath the measurements. Possible reasons for this are
considered in [11]. Since the data is at quite low Q2 it is
clear that the FFNS would lead to very similar predictions.
By comparison with Fig. 4 one can see that there would
be a very slight improvement for the higher Q2 points,
but only due to missing contributions correctly accounted
for in the VFNS. Similarly the ZM-VFNS would actually
compare to the data fairly well, but is simply incorrect at
such low Q2.

5 Summary

In this paper we have explicitly constructed a VFNS for
the production and conversion of heavy flavours for the
case of charged currents. We have demonstrated that the
predicted structure function is very well described over a
wide range of x and Q2 - having the correct asymptotic

limits for low Q2 and for Q2 → ∞. We note that a VFNS
is particularly important in this case. For Q2 ∼ m2

c there
is no reason why the ZM-VFNS should be a particularly
good approximation to the correct structure function since
it is missing essential information on the kinematics. In-
deed, it is not that successful in the neutral current case,
often leading to a negative F c2 for low Q2 and being much
too high for F cL as seen in e.g. the first of [6]. It has, how-
ever, been argued, e.g. [17], that the FFNS is sufficient
even up to Q2 >> m2

c , and for the neutral current F2
it seems arguable that this is correct (particularly if the
renormalization/factorization scale is chosen judiciously).
However, it was demonstrated in [18] that particularly for
the case of F3, which is best measured in neutrino scat-
tering, this is no longer true, and at high Q2 the FFNS
expansion is very slow to converge towards a resummed
VFNS result and changes considerably from order to or-
der. Hence, in this case the FFNS is clearly unreliable at
high Q2 and a VFNS is needed.

Our particular scheme is built upon two basic ideas
- incorporation of the correct kinematic behaviour into
each coefficient function by imposition of the continuity of
(dF (x,Q2)/d lnQ2) across the transition point Q2 = m2

c ,
and a correct ordering of the expansion in αS , so that a
well-defined expansion scheme is used in each limit and
in between. However, these two ideas are linked by the
complete definition. In the case of charged currents the
former no longer appears to be such a direct benefit as
for the neutral current case, because even the lowest or-
der boson-gluon fusion diagram needs a collinear subtrac-
tion due to the final state light quark, and thus the finite
part is not a true parton cross-section. This means that
unlike for the quark-antiquark production in the neutral
current case the coefficient function does not vanish at
threshold, and is even divergent. This leads both to tech-
nical difficulty, with our coefficient functions containing
‘+’ distributions, and to there being a less direct link be-
tween the coefficient functions and the physics. As such,
superficially there seems to be no advantage compared to
other VFNSs. Nevertheless, the ordering still remains an
advantage. Not only is it theoretically correct, combining
renormalization/factorization scheme independence up to
higher orders with continuity of structure functions, but it
has a clear phenomenological benefit. This becomes par-
ticularly clear at NLO, where the ordering and the con-
tinuity of the lnQ2-derivative of the structure function
impose conditions on C(1)V F

i,¯̃sc even in the absence of the
NLO FFNS coefficient functions, forcing smoothness by
relating this NLO coefficient function to the NLO evolu-
tion. Other schemes, e.g. [3,5], do not have the same type
of definition of C(1)V F

i,¯̃sc , i.e. do not relate it to P (1)
qg and

would, we believe, have similar behaviour to our curves
with this coefficient function set equal to zero if the scale
µ2 = Q2 were used. This unphysical behaviour would,
however, be reduced if arguably more physical scales, such
as µ2 = Q2 +m2

c were used.
Along with this paper we will make available new code

for calculating the heavy flavour contribution to charged



R.S. Thorne, R.G. Roberts: A variable flavour number scheme for charged current heavy flavour structure functions 349

currents7. This contains various changes and corrections
compared to the previous version. In particular we no
longer use the coefficient function in [19] for calculation
of F2(x,Q2) in the charged current case, since this seems
to be incompatible with those in [13] and [14], and we
choose to believe these since [13] has been extensively
cross-checked8. This change in coefficient functions leads
to a significant reduction in F2(x,Q2) at low Q2, though
the difference disappear at high Q2. Thus, we now have a
complete, explicit prescription for the production of
charged current structure functions including heavy
flavour effects which may be used along with LO or NLO
MS partons distributions. We hope this will prove useful
to the community.
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